
Monogenic S4 Quartic Fields Arising from

Elliptic Curves

Joint work with Kate Stange and Alden Gassert

Hanson Smith

University of Colorado, Boulder



Table of contents

1. Background

2. The Main Result and Context

3. Proof Ideas

4. Further Questions

1



Background



Monogenic Fields

Let K be a number field. We say K is monogenic if the ring of integers

OK admits a power Z-basis. That is, if there is some monic, irreducible

f (x) ∈ Z[x ] with a root θ such that OK has a Z-basis
{

1, θ, . . . , θn−1
}

,

then K is monogenic.

Examples: Quadratic fields. The field Q(
√
d) has a ring of integers with

Z-basis

{
1,

1 +
√
d

2

}
if d ≡ 1 modulo 4 and

{
1,
√
d
}

otherwise.

Cyclotomic fields. The ring of integers OQ(ζp) has Z-basis{
1, ζp, . . . , ζ

p−2
p

}
.
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A Non-monogenic Field

Consider x3 − x2 − 2x − 8 and let θ be a root. Dedekind showed Q(θ) is

not monogenic.

A “good” Z basis is {
1,

1

2
(θ + θ2), θ2

}
.
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Division Polynomials and Partial Torsion Fields

For the rest of the talk let E be an elliptic curve over Q. If

P = (x , y) ∈ E (Q) then we can describe the multiplication by m map

quite explicitly:

[m]P =

(
φm(P)

Ψm(P)2
,
ωm(P)

Ψm(P)3

)
where φm,Ψm, ωm ∈ Z[x , y ]. If m is odd then Ψm ∈ Z[x ].

We call Ψm the mth division polynomial.

Generally, Q(E [m]) is called the mth torsion field or mth division field.

If m is odd and Ψm is irreducible we define the mth partial torsion field

to be the extension of Q obtained by a root of Ψm.
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Another Definition of Division Polynomials

If we write

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

then we can define Ψn recursively starting with

Ψ1 = 1,

Ψ2 = 2y + a1x + a3,

Ψ3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x + b8,

Ψ4

Ψ2
= 2x6+b2x

5+5b4x
4+10b6x

3+10b8x
2+(b2b8−b4b6)x+(b4b8−b26),

and using the formulas

Ψ2m+1 = Ψm+2Ψ3
m −Ψm−1Ψ3

m+1 for m ≥ 2,

Ψ2m+1Ψ2 = Ψ2
m−1ΨmΨm+2 −Ψm−2ΨmΨ2

m+1 for m ≥ 3.
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The Main Result and Context



A Monogenic Family

Theorem

Suppose that α± 8 are squarefree, where α ∈ Z. Let θ be a root of the

irreducible polynomial T 4 − 6T 2 − αT − 3. Then the ring of integers of

Q(θ) has Z-basis
{

1, θ, θ2, θ3
}

. That is, Q(θ) is a monogenic quartic

field. Moreover, Q(θ) has Galois group S4.
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Our Main Result

Theorem

Let E be an elliptic curve defined over Q, such that some twist E ′ of E

has a 4-torsion point defined over Q.

Then the following are equivalent:

1. E ′ has reduction types I ∗1 and I1 only;

2. E has j-invariant with squarefree denominator except a possible

factor of 4.

3. E has j-invariant j = (α2−48)3
(α−8)(α+8) , where α ∈ Z, α± 8 are squarefree.

Let θ be a root of Ψ3. If any of the above hypotheses holds, then the

third partial torsion field, Q(θ), is monogenic with a generator given by a

root of T 4 − 6T 2 − αT − 3. Note the generator of the power basis is

not θ. Moreover, Q(θ) has discriminant −27(α− 8)2(α + 8)2.
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Why T 4 − 6T 2 − αT − 3?

Often, if you want to look at elliptic curves with 4-torsion over Q, you

look at the curve

E : y2 + (α + 8β)xy + β(α + 8β)2y = x3 + β(α + 8β)x2.

This parametrization is called Tate’s normal form.

Here (0, 0) has order 4

and

Ψ3 =3x4 +
(
(α + 8β)2 + 4β(α + 8β)

)
x3 + 3β(α + 8β)3x2

+ 3β2(α + 8β)4x + β3(α + 8β)5.

However, we found the model that worked best for us was the Fueter

form:

T 2
1 = 4T 3 +

α

β
T 2 + 4T .

Here the identity is (0, 0) and
(

1,
√

8 + α
β

)
is a point of order 4.
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Why care?

Hasse’s problem: When is Q(θ) monogenic?

Torsion fields, Q(E [m]), are a generalization of cyclotomic fields.

Cyclotomic fields and their maximal real subfields are monogenic. We

have class field theory. Cyclotomic fields have very nice formulas for

ramification and for the field discriminant.

Torsion on Elliptic Curves in general: Given a Galois group or a degree,

what torsion subgroups can elliptic curves over number fields with that

Galois group or that degree have?
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Proof Ideas



The Montes Algorithm

Let f (x) be a monic, irreducible, integer polynomial with root θ and let p

be a prime. The Montes algorithm takes in f (x) and through successive

reductions and expansions tells us about vp
([
OQ(θ) : Z[θ]

])
.

Recall,

disc (Q(θ)) ·
[
OQ(θ) : Z[θ]

]2
= disc(f ).

In particular,

vp (disc(Q(θ))) + 2vp
([
OQ(θ) : Z[θ]

])
= vp (disc(f )) .
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The Montes Algorithm

Example: Consider x4 + 9x + 9 and p = 3.

We reduce modulo 3 and

obtain x4. The x-adic development is again x4 + 9x + 9. Now the

x-Newton polygon is:

(0,2)
(1,2)

(1,1)
(2,1)

(4,0)

The x-Newton polygon
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The Idea

We know the discriminant of Ψn is divisible only by primes dividing n and

primes at which the elliptic curve in question has bad reduction. This

gives us a small list of primes for which monogeneity can fail.

The Montes algorithm gives us a tool to deal with our small list of

potentially problematic primes, but knowing the valuations of every

coefficient of Ψn is not easy.

However, if the constant coefficient has valuation 1 we don’t need to

know about the other coefficients.
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Valuations of Division Polynomials

Stange has a paper where the valuations of the division polynomials

evaluated at a point are explicitly computed. The valuations depend on

the reduction data of the elliptic curve.

We want to plug any point P ∈ E (Q) with x(P) = 0 into Ψn so we can

find the valuation of the constant coefficient.
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Tate’s Algorithm

Given a curve

E : y2 + (α + 8β)xy + β(α + 8β)2y = x3 + β(α + 8β)x2

in Tate’s normal form we apply Tate’s algorithm to understand the

reduction type of E in terms of α and β.
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Change Coordinates

Finally, we change coordinates to get to the Fueter form of the curve.

The change of coordinates is...

(x , y) =

(
aβ

T
− aβ,

1

2

(
(aβ)

3
2T1

T 2
− a2β

T

))
.

We apply the Montes algorithm to obtain the result. We’ve also shown

that the odd Fueter division polynomials don’t yield monogenic fields for

n > 3.
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Further Questions



Further Questions

Can we use the Montes algorithm and explicit formulas for the

discriminant of a polynomial to find other monogenic families?
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Further Questions

Can an in-depth analysis of division polynomials, perhaps in conjunction

with the Montes algorithm, shed light on some properties of torsion fields

and torsion point fields?
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Thank You

Thank you for listening. Preprints of this work and some of the other

work mentioned is available on my website:

http://math.colorado.edu/∼hwsmith/index.html
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