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Summary



Ramification Result

Let E be an elliptic curve over a number field K with good supersingular

reduction at some prime p living above the rational prime p.

Suppose

P 2 E (K ) is a point of exact order pn. Then we precisely classify the

possible valuations of the x- and y -coordinates of P in terms of the

valuation of the coe�cient of x
p2�p

2 in the p
th division polynomial of E .

Call this valuation1 µ. If µ � p
p+1

, then all the x-coordinates of

p
n-torsion points have the same valuation, which is

�2

p2n � p2n�2
= �2 · 1

p2(n�1)(p2 � 1)
.

1
Normalize so that vp(p) = 1.
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Sporadic Points: Prime Power Level

Let E be an elliptic curve that is supersingular at some prime

above p with µ � p
p+1

, then j(E ) does not correspond to a

sporadic point on X1(pn) for any n > 0.

In other words, E does not have a pn-torsion point over a

number field of especially small degree.
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Sporadic Points: Composite Level

Let N > 12 be a positive integer not divisible by 6 and write

N =
Qk

i=1
peii for the prime factorization. Suppose E/Q has

good supersingular reduction at each pi , then j(E ) does not

correspond to a sporadic point on X1(N).
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Moral

Being supersingular at primes dividing N can be an

obstruction to having an N-torsion point defined

over a number field of particularly low degree.
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Context



Division/Torsion Fields

Previous work in this area comes in a couple of di↵erent flavors:

• Firstly, in analogy with cyclotomic fields we can ask about the

arithmetic structure of fields obtained by adjoining some or all of the

N-division points of an elliptic curve.

• We can also ask about the possible torsion structures for elliptic

curves over a number field with a given Galois group or degree.
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Some Previous Work

Arithmetic of Torsion Fields: [Duke and Tóth, 2002];

[Adelmann, 2001]; [Kraus, 1999], [Cali and Kraus, 2002],

[Freitas and Kraus, 2018];

[González-Jiménez and Lozano-Robledo, 2016].

Mazur’s Theorem +: [Mazur, 1977], [Mazur, 1978];

[Kenku and Momose, 1988], [Kamienny, 1992]; [Jeon et al., 2004],

[Najman, 2016], [Derickx et al., 2020].

Uniform Boundedness +: [Merel, 1996]; Oesterlé’s proof:

[Derickx et al., 2017, Appendix A]; [Parent, 1999];

[Lozano-Robledo, 2018].
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Valuations of Points



Canonical Subgroups

Let Ê denote the formal group of an elliptic curve that is supersingular at

p and write [p]T for the multiplication-by-p map.

In “Propriétés galoisiennes des points d’ordre fini des courbes elliptiques,”

Serre recognized that the Newton polygon associated to [p]T could have

two forms in the supersingular case.

It could have one side (one-slope case) corresponding to all p-torsion

elements in Ê having the same valuation, or it could have two sides

(two-slope case), corresponding to a subgroup of Ê [p] of order p having

larger valuation.
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The Two-Slope Case

Notice µ is the valuation of the coe�cient corresponding to sums of

products of p2 � p roots.

1

(p � 1, µ)

(0, 0)
p
2 � 1

Figure 1: The Newton polygon for the polynomial
Q

P̂2Ê [=p]

(T � P̂)
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The One-Slope Case

1
(p � 1, µ)

(0, 0)
p
2 � 1

Figure 2: The Newton polygon for the polynomial
Q

P̂2Ê [=p]

(T � P̂)
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Canonical Subgroups

In the ‘two-slope case’ people say that E has a canonical subgroup at p.

This is because the subgroup of Ê with larger valuation is a canonical lift

of the kernel of Frobenius. This subgroup is very important to those who

study overconvergent modular forms and well-studied in that context.
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Valuations and Canonical Subgroups

Recall, µ is the valuation of the coe�cient of x
p2�p

2 in the p
th division

polynomial. Equivalently, it is the valuation of the coe�cient of T p in

[p]T . When there is a canonical subgroup, then you can think of µ as

the sum of the valuations of elements of Ê [= p] that are not in the

canonical subgroup.

If µ � p
p+1

, then there is no canonical subgroup and all the elements in

Ê [= p] have the same valuation, which is 1

p2�1
.

If µ < p
p+1

, then there is a canonical subgroup. The elements that are

not in it have valuation µ
p2�p and the elements that are in it have

valuation 1�µ
p�1

.
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pn-Torsion

What about pn-torsion when n > 1?

First o↵, if there is no canonical subgroup, we “just divide by

p2.” So a 125-torsion element has valuation 1

54(52�1)
.

Even when there is a canonical subgroup, for points that are

not above it we still divide by p2. So a 125-torsion element P̂

such that [52]P̂ is not in the canonical subgroup has valuation
µ

54(52�5)
.
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Higher Order Subset of Larger Valuation

Interestingly, we have a phenomenon that is similar to the canonical

subgroup in some ways occurring for higher power torsion.

When µ is

small enough, then in the fibers over (pth roots of) elements in the

canonical subgroup, [p]�1
Q̂, there is a subset of p-elements with larger

valuation.
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Partial Theorem Statement

For n > 1, let s 2 Z�0 be the smallest integer such that µ � 1

ps (p+1)
. If

n  s + 1, then either

vp

⇣
P̂

⌘
=

1� p
n�1µ

pn�1(p � 1)
or vp

⇣
P̂

⌘
=

µ

p2m(p2 � p)
, (1)

where m is the smallest non-negative integer such that

vp

⇣
[pm] P̂

⌘
= µ

p2�p .

If n > s + 1, then either

vp

⇣
P̂

⌘
=

1� p
sµ

p2n�s�2(p � 1)
or vp

⇣
P̂

⌘
=

µ

p2m(p2 � p)
, (2)

where m is as above.

Hanson Smith Ramification in Division Fields and Sporadic Points on Modular Curves



Partial Theorem Statement

For n > 1, let s 2 Z�0 be the smallest integer such that µ � 1

ps (p+1)
. If

n  s + 1, then either

vp

⇣
P̂

⌘
=

1� p
n�1µ

pn�1(p � 1)
or vp

⇣
P̂

⌘
=

µ

p2m(p2 � p)
, (1)

where m is the smallest non-negative integer such that

vp

⇣
[pm] P̂

⌘
= µ

p2�p . If n > s + 1, then either

vp

⇣
P̂

⌘
=

1� p
sµ

p2n�s�2(p � 1)
or vp

⇣
P̂

⌘
=

µ

p2m(p2 � p)
, (2)

where m is as above.

Hanson Smith Ramification in Division Fields and Sporadic Points on Modular Curves



Proof Ideas



Main Idea

Stare at the power series for the multiplication-by-p map in the formal

group of E at p for a long time. Because E is supersingular at p this is

equivalent to staring at the p
th division polynomial.

Let ⇡p be a uniformizer at p. The multiplication-by-p map has the form

[p]T = pf (T ) + ⇡µ
p g (T p) + h

⇣
T

p2
⌘
,

where f , g , and h are power series without constant coe�cients and with

f
0(0), g 0(0), h0(0) all units.

After a little work we see that we must compare pv(P̂) + µ and p
2
v(P̂)

where P̂ is the image of a point of E [= p
n] in the formal group. We also

have that the minimum of these two values is greater than or equal to Q̂,

where Q 2 E [= p
n�1].
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Application to Sporadic Points

on X1(N)



Degrees of Minimal pn-Torsion Fields

The work above gives the minimal ramification necessary to have a

p
n-torsion point in terms of the valuation of a coe�cient of the p

th

division polynomial. This yields a lower bound on the degree of a field

over which a p
n-torsion point is defined.

So to preclude sporadic points on X1(pn), compare the lower bound with

have with an upper bound on the Q-gonality of the modular curve

X1(pn). There is also some dotting of i’s and crossing of t’s with additive

reduction resolving to good supersingular reduction and Weber functions.
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Prime Power Level Sporadic Points

Let E be an elliptic curve that is supersingular at some prime
above p with no canonical subgroup (µ � p

p+1
), then j(E ) does

not correspond to a sporadic point on X1(pn) for any n > 0.

Elliptic curves with a canonical subgroup are “less supersingular”

because, like ordinary elliptic curves, they have a canonical lift of the

kernel of Frobenius. Hence, if one was willing to speak imprecisely (which

I always am), we could say that the most supersingular elliptic curves do

not correspond to sporadic points.
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Sur la p-di↵érente du corps des points de p-torsion des

courbes elliptiques.

Bull. Austral. Math. Soc., 60(3):407–428.

Hanson Smith Ramification in Division Fields and Sporadic Points on Modular Curves



References v

Lozano-Robledo, Á. (2018).
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Summary



Ramification Result
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valuation of the coe�cient of x
p2�p

2 in the p
th division polynomial of E .

Call this valuation1 µ. If µ � p
p+1

, then all the x-coordinates of

p
n-torsion points have the same valuation, which is

�2

p2n � p2n�2
= �2 · 1

p2(n�1)(p2 � 1)
.

1
Normalize so that vp(p) = 1.
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Sporadic Points: Prime Power Level

Let E be an elliptic curve that is supersingular at some prime

above p with µ � p
p+1

, then j(E ) does not correspond to a

sporadic point on X1(pn) for any n > 0.

In other words, E does not have a pn-torsion point over a

number field of especially small degree.
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Sporadic Points: Composite Level

Let N > 12 be a positive integer not divisible by 6 and write

N =
Qk

i=1
peii for the prime factorization. Suppose E/Q has

good supersingular reduction at each pi , then j(E ) does not

correspond to a sporadic point on X1(N).
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Moral

Being supersingular at primes dividing N can be an

obstruction to having an N-torsion point defined

over a number field of particularly low degree.
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Context



Division/Torsion Fields

Previous work in this area comes in a couple of di↵erent flavors:

• Firstly, in analogy with cyclotomic fields we can ask about the

arithmetic structure of fields obtained by adjoining some or all of the

N-division points of an elliptic curve.

• We can also ask about the possible torsion structures for elliptic

curves over a number field with a given Galois group or degree.
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Some Previous Work

Arithmetic of Torsion Fields: [Duke and Tóth, 2002];

[Adelmann, 2001]; [Kraus, 1999], [Cali and Kraus, 2002],

[Freitas and Kraus, 2018];

[González-Jiménez and Lozano-Robledo, 2016].

Mazur’s Theorem +: [Mazur, 1977], [Mazur, 1978];

[Kenku and Momose, 1988], [Kamienny, 1992]; [Jeon et al., 2004],

[Najman, 2016], [Derickx et al., 2020].

Uniform Boundedness +: [Merel, 1996]; Oesterlé’s proof:

[Derickx et al., 2017, Appendix A]; [Parent, 1999];

[Lozano-Robledo, 2018].
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Valuations of Points



Canonical Subgroups

Let Ê denote the formal group of an elliptic curve that is supersingular at

p and write [p]T for the multiplication-by-p map.

In “Propriétés galoisiennes des points d’ordre fini des courbes elliptiques,”

Serre recognized that the Newton polygon associated to [p]T could have

two forms in the supersingular case.

It could have one side (one-slope case) corresponding to all p-torsion

elements in Ê having the same valuation, or it could have two sides

(two-slope case), corresponding to a subgroup of Ê [p] of order p having

larger valuation.
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larger valuation.

Hanson Smith Ramification in Division Fields and Sporadic Points on Modular Curves



Canonical Subgroups
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The Two-Slope Case

Notice µ is the valuation of the coe�cient corresponding to sums of

products of p2 � p roots.

1

(p � 1, µ)

(0, 0)
p
2 � 1

Figure 1: The Newton polygon for the polynomial
Q

P̂2Ê [=p]

(T � P̂)
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The One-Slope Case

1
(p � 1, µ)

(0, 0)
p
2 � 1

Figure 2: The Newton polygon for the polynomial
Q

P̂2Ê [=p]

(T � P̂)
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Canonical Subgroups

In the ‘two-slope case’ people say that E has a canonical subgroup at p.

This is because the subgroup of Ê with larger valuation is a canonical lift

of the kernel of Frobenius. This subgroup is very important to those who

study overconvergent modular forms and well-studied in that context.
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Valuations and Canonical Subgroups

Recall, µ is the valuation of the coe�cient of x
p2�p

2 in the p
th division

polynomial. Equivalently, it is the valuation of the coe�cient of T p in

[p]T . When there is a canonical subgroup, then you can think of µ as

the sum of the valuations of elements of Ê [= p] that are not in the

canonical subgroup.

If µ � p
p+1

, then there is no canonical subgroup and all the elements in

Ê [= p] have the same valuation, which is 1

p2�1
.

If µ < p
p+1

, then there is a canonical subgroup. The elements that are

not in it have valuation µ
p2�p and the elements that are in it have

valuation 1�µ
p�1

.
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Ê [= p] have the same valuation, which is 1

p2�1
.

If µ < p
p+1

, then there is a canonical subgroup. The elements that are

not in it have valuation µ
p2�p and the elements that are in it have

valuation 1�µ
p�1

.

Hanson Smith Ramification in Division Fields and Sporadic Points on Modular Curves



Valuations and Canonical Subgroups

Recall, µ is the valuation of the coe�cient of x
p2�p

2 in the p
th division

polynomial. Equivalently, it is the valuation of the coe�cient of T p in

[p]T . When there is a canonical subgroup, then you can think of µ as

the sum of the valuations of elements of Ê [= p] that are not in the
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pn-Torsion

What about pn-torsion when n > 1?

First o↵, if there is no canonical subgroup, we “just divide by

p2.” So a 125-torsion element has valuation 1

54(52�1)
.

Even when there is a canonical subgroup, for points that are

not above it we still divide by p2. So a 125-torsion element P̂

such that [52]P̂ is not in the canonical subgroup has valuation
µ

54(52�5)
.
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Higher Order Subset of Larger Valuation

Interestingly, we have a phenomenon that is similar to the canonical

subgroup in some ways occurring for higher power torsion.

When µ is

small enough, then in the fibers over (pth roots of) elements in the

canonical subgroup, [p]�1
Q̂, there is a subset of p-elements with larger

valuation.
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Partial Theorem Statement

For n > 1, let s 2 Z�0 be the smallest integer such that µ � 1

ps (p+1)
. If

n  s + 1, then either

vp

⇣
P̂

⌘
=

1� p
n�1µ

pn�1(p � 1)
or vp

⇣
P̂

⌘
=

µ

p2m(p2 � p)
, (1)

where m is the smallest non-negative integer such that

vp

⇣
[pm] P̂

⌘
= µ

p2�p .

If n > s + 1, then either

vp

⇣
P̂

⌘
=

1� p
sµ

p2n�s�2(p � 1)
or vp

⇣
P̂

⌘
=

µ

p2m(p2 � p)
, (2)

where m is as above.
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Proof Ideas



Main Idea

Stare at the power series for the multiplication-by-p map in the formal

group of E at p for a long time. Because E is supersingular at p this is

equivalent to staring at the p
th division polynomial.

Let ⇡p be a uniformizer at p. The multiplication-by-p map has the form

[p]T = pf (T ) + ⇡µ
p g (T p) + h

⇣
T

p2
⌘
,

where f , g , and h are power series without constant coe�cients and with

f
0(0), g 0(0), h0(0) all units.

After a little work we see that we must compare pv(P̂) + µ and p
2
v(P̂)

where P̂ is the image of a point of E [= p
n] in the formal group. We also

have that the minimum of these two values is greater than or equal to Q̂,

where Q 2 E [= p
n�1].
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Application to Sporadic Points

on X1(N)



Degrees of Minimal pn-Torsion Fields

The work above gives the minimal ramification necessary to have a

p
n-torsion point in terms of the valuation of a coe�cient of the p

th

division polynomial. This yields a lower bound on the degree of a field

over which a p
n-torsion point is defined.

So to preclude sporadic points on X1(pn), compare the lower bound with

have with an upper bound on the Q-gonality of the modular curve

X1(pn). There is also some dotting of i’s and crossing of t’s with additive

reduction resolving to good supersingular reduction and Weber functions.
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Prime Power Level Sporadic Points

Let E be an elliptic curve that is supersingular at some prime
above p with no canonical subgroup (µ � p

p+1
), then j(E ) does

not correspond to a sporadic point on X1(pn) for any n > 0.

Elliptic curves with a canonical subgroup are “less supersingular”

because, like ordinary elliptic curves, they have a canonical lift of the

kernel of Frobenius. Hence, if one was willing to speak imprecisely (which

I always am), we could say that the most supersingular elliptic curves do

not correspond to sporadic points.
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Hanson Smith Ramification in Division Fields and Sporadic Points on Modular Curves



References i

Adelmann, C. (2001).

The decomposition of primes in torsion point fields, volume

1761 of Lecture Notes in Mathematics.

Springer-Verlag, Berlin.

Cali, E. and Kraus, A. (2002).
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